Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509085

RESUMO

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Assuntos
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleosídeos , Lactobacillus , Prolina , Purinas
2.
Artigo em Inglês | MEDLINE | ID: mdl-30680191

RESUMO

BACKGROUND: Urea pretreatment is an efficient strategy to improve fiber digestibility of low quality roughages for ruminants. Nitrate and oil are usually used to inhibit enteric methane (CH4) emissions from ruminants. The objective of this study was to examine the combined effects of urea plus nitrate pretreated rice straw and corn oil supplementation to the diet on nutrient digestibility, nitrogen (N) balance, CH4 emissions, ruminal fermentation characteristics and microbiota in goats. Nine female goats were used in a triple 3 × 3 Latin Square design (27 d periods). The treatments were: control (untreated rice straw, no added corn oil), rice straw pretreated with urea and nitrate (34 and 4.7 g/kg of rice straw on a dry matter [DM] basis, respectively, UN), and UN diet supplemented with corn oil (15 g/kg soybean and 15 g/kg corn were replaced by 30 g/kg corn oil, DM basis, UNCO). RESULTS: Compared with control, UN increased neutral detergent fiber (NDF) digestibility (P < 0.001) and copies of protozoa (P < 0.001) and R. albus (P < 0.05) in the rumen, but decreased N retention (-21.2%, P < 0.001), dissolved hydrogen concentration (-22.8%, P < 0.001), molar proportion of butyrate (-18.2%, P < 0.05), (acetate + butyrate) to propionate ratio (P < 0.05) and enteric CH4 emissions (-10.2%, P < 0.05). In comparison with UN, UNCO increased N retention (+34.9%, P < 0.001) and decreased copies of protozoa (P < 0.001) and methanogens (P < 0.001). Compared with control, UNCO increased NDF digestibility (+8.3%, P < 0.001), reduced ruminal dissolved CH4 concentration (-24.4%, P < 0.001) and enteric CH4 emissions (-12.6%, P < 0.05). CONCLUSIONS: A combination of rice straw pretreated with urea plus nitrate and corn oil supplementation of the diet improved fiber digestibility and lowered enteric CH4 emissions without negative effects on N retention. These strategies improved the utilization of rice straw by goats.

3.
J Sci Food Agric ; 98(14): 5205-5211, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29635854

RESUMO

BACKGROUND: Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg-1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg-1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). RESULTS: Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate:propionate ratio and lower methane production with a decline of methanogens, in comparison to control. CONCLUSIONS: Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry.


Assuntos
Metano/metabolismo , Oryza/metabolismo , Rúmen/metabolismo , Triticum/metabolismo , Ração Animal/análise , Animais , Gado/metabolismo , Metano/análise , Nitratos/química , Oryza/química , Propionatos/análise , Propionatos/metabolismo , Rúmen/química , Triticum/química , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...